If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2-26d=0
a = 1; b = -26; c = 0;
Δ = b2-4ac
Δ = -262-4·1·0
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-26}{2*1}=\frac{0}{2} =0 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+26}{2*1}=\frac{52}{2} =26 $
| x÷25+33=11 | | -4+y=-7 | | -5x-35=9x+21 | | 8/x+6=3/2x+15/4 | | 5(x-1)=10x-5x-6 | | 2x-4(x-3)=-9+4x-21 | | 2n+14=2 | | 2-7y=y+50 | | E=535+4.50n,I=12n | | 5a+10(a+9)=180 | | 52(x+4)=56(x-4) | | (8x+10)-3x=(3x+90)-3x | | 3x+46-x=-12 | | 9b-7=11 | | 2(a-3)=3(a+4) | | 6^3x−3=48 | | 10(6+4/5b=9/10b | | 1/4(-3y+7)=2/5(8-3y) | | 12m+100=1129 | | 284-m=72 | | Y+(y+2)(-2)=y-2 | | 97=60/t | | 6b-3=3 | | 2(5-x(1.7)=15.1-7(1.7) | | -10=3/4*5+b | | O.50x+0.35(30)=48.5 | | 13+5xx=3 | | 8=4u+32+4u | | 4t-(t-4)=16 | | 4t-(t-4(=16 | | 34=2v-6+3v | | 6p÷60=-5 |